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Abstract 

This paper uses the Vickrey (1969) bottleneck model to empirically measure the social 

cost of traffic congestion in the US. We estimate extra travel time over and above hypothetical 

free-flow travel time, which we call “queuing time”, for each average commute trip. Our 

estimate implies that the annual social cost of congestion borne by all US commuters is 24 

billion dollars. A higher level of congestion in a city may be attributed to a smaller per capita 

road stock in the city. This paper also empirically quantifies the optimal toll depending both 

on the commuter’s arrival time and residential location. 
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1 Introduction 

Economists have long understood that traffic congestion is a source of market failure and 

therefore a social problem. The traditional framework for analyzing the inefficiency cost of 

traffic congestion is based on Pigou (1920).1 Despite the success of the conceptual Pigouvian 

framework, empirical estimates of its inefficiency cost are relatively rare. An empirical 

estimation of the Pigouvian inefficiency cost is challenging, since it requires identification 

of both the demand and the cost (supply) functions of travel that are hard to empirically 

conceptualize. 

The Pigouvian congestion model itself has also a theoretical drawback, in that it does 

not treat commuters’ trip timing decisions endogenously. A result of this omission is the 

static nature of traffic congestion, which is an oversimplification of the real-world’s dynamic 

traffic congestion. The alternative bottleneck model of Vickrey (1969), later formalized in 

Arnott et al. (1990, 1993), treats the trip timing decision endogenously and has now become 

the workhorse model for analysis of traffic congestion involving dynamics. The main goal of 

this paper is to empirically measure the inefficiency cost from traffic congestion in the US 

using the bottleneck model framework. 

The main insight from the bottleneck model is that for any commute trip, extra travel 

time over and above hypothetical free-flow time, which the model calls “queuing time” (or 

congestion delay), is purely social loss and thus constitutes the society’s welfare loss. Using a 

detailed trip-level dataset of commuters in the US, this paper therefore estimates the queuing 

time for each average commute trip, and we then aggregate them to compute the social cost 

of congestion from all commute trips in the US. 

Note that the bottleneck model and the Pigouvian model could be analyzed in a unified 

framework, as attempted in Arnott et al. (1993), but it would be fair to say that these mod-

els are quite different framework for the same phenomenon of traffic congestion. While the 

Pigouvian framework is based on individuals’ route choice (or travel mode choice) behavior, 

1See Brueckner (2011) for a modern exposition of the Pigouvian congestion model. 
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the bottleneck model is focusing on the trip timing choice of individuals. The key concept 

in the Pigou model is externality. While the bottleneck model does not ignore the fact that 

individual drivers generate congestion externalities, the individuals’ failure in the bottleneck 

model is a coordination problem. The bottleneck model is more explicitly based on individ-

ual’s micro-economic behavior. However, it is not the focus of the paper to analyze their 

difference and similarities of these two models. As far as we know, there is no earlier studies 

that estimated the cost of road congestion using the bottleneck model, so it is worthwhile to 

use this popular model to apply the data and estimate the social cost of congestion. 

An identification issue arises because each commute trip’s hypothetical free-flow travel 

time is not directly observable. For this, we exploit the model’s other key result: that 

the other commuter on the same commute route who alternatively arrived earliest in the 

morning meets no queue, so her travel time is the free-flow time corresponding to the route. 

Our econometric model is therefore specified to estimate the expected difference in travel 

time by binary arrival timing choice, i.e., arrival at a peak time with queuing vs. arrival 

at an earlier timing with no queuing, conditional on that the commuters under comparison 

effectively traveled an identical route. 

Our key identifying assumption is that travel time of an individual who arrives at a 

particular timing is determined solely by the characteristics of the route traveled, especially 

its physical distance, which allows us to focus on conditioning on the route traveled in our 

estimation. Our basic identifying strategy is to include extensive route characteristics as well 

as person characteristics related to the choice of commute route in our empirical specification. 

We then address the potential omitted variable bias concern by employing the instrumental 

variable estimation and the household fixed model estimation strategies. 

Another empirical issue of the bottleneck model is that it considers only commuters whose 

travel demand is perfectly inelastic. To set up a consistent empirical framework, we also use 

only the sample of commute trips that took place in a finite time interval in a day (morning 

or evening congestion, respectively), which implies that the social cost estimated in this 
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paper includes only the costs from commute trips. An advantage of using only the commute 

trips is that the number of all commutes in the US population is relatively well identified 

(compared to the other kinds of trips), so our inference about the commuter population 

would be accurate for this particular group of travelers. 

The empirical literature on the cost of congestion usually estimates the relationship 

between the inverse of travel speed and the traffic density, which in the Pigouvian framework 

is the cost (supply) function of travel, using traffic data on particular road segments (e.g., 

Walters, 1961; Dewees, 1979; Fosgerau and Small, 2012). The main estimand in these studies 

is marginal external congestion cost of added car to the road segment that is used to gauge 

the Pigouvian congestion toll. A more recent paper by Li et al. (2018) estimates the cost 

function of travel for an entire city, Beijing, using a larger number of road segments in 

the city. Since traffic density is endogenous, they use a driving restriction policy as an 

exogenous variation (instrument) for traffic density. A limitation of these studies is that 

since the demand function of travel is not explicitly estimated, either computation of the 

Pigouvian deadweight loss is missing or computation of it relies on their assumption on 

the demand function. Moreover, traffic data used in these studies do not fully capture the 

traveler’s congestion delays that occur over her whole travel route. 

Other studies use trip-level datasets for estimation of the congestion cost. For example, 

Couture et al. (2018) estimate the speed-distance relationship that holds at the trip level 

and then construct each city’s speed index, which allow them to identify the city-level supply 

function of travel. However, their Pigouvian deadweight loss is computed still without an 

explicitly estimated demand function. Akbar and Duranton (2017) is the first study that 

explicitly estimates the demand function of travel as well as the supply function of travel. 

They use a counterfactual travel data generated from Google Maps as well as a survey data 

on actual trips, which together allow them to identify the demand function of travel in a 

single city Bogota, Columbia. 

Rather than using the Pigouvian framework, which is common in the earlier studies, this 
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paper uses arguably a more detailed microeconomic model of Vickrey (1969) to empirically 

measure the social cost of congestion. We do not need to estimate the demand function of 

travel that is empirically challenging, nor the marginal external congestion cost, although 

our estimation still allows us to indirectly quantify marginal external congestion cost. Our 

approach is to directly estimate the inefficiency cost for each commute trip, which is more 

intuitive and practically more feasible. Our method can be applied to estimation of the 

inefficiency cost of congestion measured at the route, city, and country levels. 

Our paper is also related to a few earlier empirical papers on the bottleneck model. In 

particular, Small (1982) uses a discrete choice econometric framework, in which trip timing 

choices are explicit, to estimate the parameters in the commuters’ scheduling preferences. 

Hall (2018) uses a structural econometric framework to estimate the distribution of the 

scheduling preferences that are heterogeneous across individuals. Their work, however, is 

not directed to measuring the social cost of traffic congestion. 

Our main estimation result indicates that morning commuters who arrived at work at a 

peak time (between 6:15 and 11:00) traveled on average for about 2 minutes longer than the 

other commuters on the same route who alternatively arrived earlier than 6:15. As expected, 

the queuing time tends to be longer (shorter) for the morning commutes with an arrival time 

closer to (farther from) the peak time, say 9:00. From the sample of evening commutes, we 

find that the expected queuing time for each evening commute is about 1.8 minutes, implying 

that the average daily queuing time for each worker is about 3.8 minutes, which is about 8% 

of the sample mean of daily commute time. While this individual inefficiency cost may sound 

small, aggregation over all workers yields a huge social cost. According to our computation, 

the annual social cost of congestion borne by all US workers is about 24 billion dollars. 

We also examine the variation of congestion by city. Specifically, we construct the conges-

tion ranking of large metropolitan statistical areas (MSA) based on our city-specific estimates 

for the mean queuing time. We then explore the determinants of traffic congestion in the 

city. We find that residents in a city with a smaller road stock per capita do experience 
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a longer queuing time on average than those in a city with a larger road stock per capita, 

and that the level of congestion is higher in the city where the demand for vehicle travels 

is overall higher. We also examine within-city determinants of congestion and find some 

anticipated results. 

The optimal policy in the bottleneck model is imposition of a time-varying congestion 

toll. The model predicts that the optimal toll would eliminate all the queues by inducing 

reschedule of departures, which would then recover all the welfare loss estimated in this paper. 

This optimal toll is exactly same as the queuing time cost as a function of arrival time, which 

could be imposed separately at each commute route. This paper makes a meaningful starting 

point toward empirical quantification of a detailed optimal toll by estimating the expected 

queuing time as a function of arrival time by trip distance for residents in particular cities. 

The rest of the paper is organized as follows. Section 2 presents our conceptual and 

the empirical framework. Section 3 explains our dataset. Section 4 reports our estimation 

results. In Section 5, we investigate the variation in congestion over residential location and 

explore the determinants of congestion. In Section 6, we quantify the optimal congestion 

toll. Finally, Section 7 concludes. 

2 Conceptual and empirical framework 

2.1 The social cost of congestion in the bottleneck model 

In this section, we briefly review the basic bottleneck model (Vickrey, 1969; Arnott 

et al., 1990) and explicitly define the social cost of congestion to be empirically measured. 

We review only essential elements of the model. 

Consider a commute route with distance x. With the speed under the congestion-free 

condition normalized at 1, the free-flow travel time from home to work is then simply x. 

There is a congestion bottleneck at the entrance to the work. Or, the whole commute route 

itself may be regarded as a congestion bottleneck. The bottleneck allows at most ψ cars to 
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pass per each time unit, which means that the parameter ψ is the capacity of the bottleneck. 

There are a fixed N number of car commuters traveling this route, each of who has an 

identical scheduling preference.2 Specifically, all the commuters want to arrive at work at 

the specific time t ∗ if there were no queue, which however is physically impossible because 

the bottleneck has a limited capacity. The resulting key feature of the Nash equilibrium is 

the trade-off between travel time and arrival at a preferable time closer to t ∗ . To formally 

illustrate this trade-off, let Y (t) denote the individual’s travel time as a function of arrival 

time t ∈ [t0, t1], where t0 and t1 are the first and the last commuters’ arrival times, respec-

tively. It is shown that in equilibrium, Y (t) increases with t from t0 to t ∗ and decreases 

afterward until t1. See Figure 1 for illustration of the Y (t) function. 

Figure 1 about here. 

Excessive travel time relative to free-flow time for the commuter who arrives at t ∈ (t0, t1) 

is the “queuing time”, which equals Y (t) − x. is Since the first traveler has zero queue, 

Y (t0) = x holds, so that the queuing time of a commuter who arrives between t0 and t1 is 

Y (t) − Y (t0).3 The model’s key insight is that each individual’s queuing time is pure social 

loss and thus constitutes the society’s welfare loss. Intuitively, if the individuals were able 

to coordinate their trip timing choices, then they would depart and arrive only at the rate 

of ψ without forming any queue and could still arrive at work at the same time as under 

laissez-faire. 

2The particular form of individual commuter’s cost assumed in the basic bottleneck model (Arnott et al., 
1990) is 

∗ α(t − d) + β max(t ∗ − t, 0) + γ max(t − t , 0), 

where d is departure time from home and t is arrival time at work. The first term is the travel time cost, 
and the second and the third term are the schedule delay cost incurred due to an earlier or a later arrival 
than the most preferred t ∗ . The parameters α, β, and γ are the unit cost placed on each cost component. 

3One could interpret that there is a positive level of congestion in the Pigouvian model, whereas the 
bottleneck model has no congestion delay at the social optimum. However, it is not an entirely correct 
interpretation, because congestion arises in the Pigou model when speed and traffic density are negatively 
related. In the meantime, congestion in the bottleneck model is defined as a drop in traffic flows, not a drop 
in traffic density. Since flow and density are different, it is possible that congestion does not arise at the 
bottlneeck model but does occur in the Pigou model for the same road situation. 
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The inefficiency cost of congestion borne by all the route users is therefore the opportunity 

cost of their total queuing times. The total queuing times are computed by integrating 

Y (t) − Y (t0) over t ∈ [t0, t1], with each arrival timing weighted by the rate of arrivals that 

is ψ. By dividing the total queuing times by N , we get the average queuing time per route 

user written as 

Z t1ψ 
[Y (t) − Y (t0)]dt. (1)

N t0 

This is the measure of welfare loss for this particular commute route. Note that the cost of 

congestion we define here is expressed in a “time” unit rather than in a monetary unit. The 

variables used in our empirical analysis are also in the time unit, but we can always multiply 

our estimate by the monetary unit cost of travel time, which we call simply “value of time”, 

to obtain the social cost expressed in a monetary unit.4 

While the standard bottleneck model assumes a single route, the real-world commuters 

travel heterogeneous routes, and we now formalize this. Let each of the heterogeneous routes 

be indexed by j, with j ∈ [0, J ]. The distribution of the number of travelers over the routes 

¯is described by the density function denoted by f(j) ≡ Nj /N̄ , where N is the number of 

all commuters in the population and Nj is the number of users of particular route j. The 

average queuing time in the population is the average queuing time for each route integrated 

over the routes weighted by the route density function f(j), which we write as 

Z J Z t1j ψj 
[Yj (t) − Yj (t0j)]f(j) dtdj, (2) 

0 t0j 
Nj 

where Yj (t) is travel time of commuter on route j who arrived at a time t ∈ [t0j , t1j ] and 

Yj (t0j ) is the travel time of a different commuter on the same route, who alternatively arrived 

4The monetary unit cost of travel time is α in the scheduling cost form shown given in footnote 2. Note 
also that in the basic bottleneck model (Arnott et al., 1993), marginal external cost of added car to the route 
is derived and given by the expression (1) multiplied by 2α. This implies that estimation of (2) below in 
this paper would give indirectly an estimate for marginal external cost of added car to each average route. 
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in the first place at t0j (with no queuing). Note that Yj (t0j ) is simply the physical distance 

of commute route j. 

We have so far assumed that individual commuters have a homogeneous scheduling pref-

erence (see footnote 2 for the scheduling preference). However, commuter preferences in 

the real world are heterogeneous. Our conceptual framework may assume that commuters’ 

scheduling preferences are heterogeneous, but we can still show that the queuing time of any 

individual on a given route is a social loss, regardless of the particular individual’s preference 

type (see Arnott et al., 1994). This implies that (2) as the average queuing time over the 

individuals having different preferences is the inefficiency cost per each average commute 

trip even under the heterogeneity of scheduling preferences. 

2.2 Empirical framework 

Our goal in this section is to estimate (2). Empirically, (2) is the expected gap in travel 

time between a commuter who arrives in a peak time t ∈ (t0j , t1j ) and another commuter 

on the same route who alternatively arrives earliest at t0j . At the moment, the distribution 

of routes, captured in the mass function f(j), is set aside in our estimation. Our initial 

belief is that our data is a random sample of all commute routes that exist in the US, under 

which we do not have to explicitly weight the route-specific average queuing time by f(j). 

We address the potential non-random sampling issue by adopting the weighting estimation 

strategy below (see Section 4.4). 

We estimate the average difference in travel times by commuters’ binary arrival timing 

choices (arrival at a peak time with queuing vs. arrival at an early time with no queuing), 

conditional on that the commuters under comparison effectively traveled an identical route. 

Our key identifying assumption is that travel time of a commuter traveling at a particular 

timing is determined solely by the route traveled by the commuter. Each traveler on a 

congested commute route would be atomic, implying that the only way she could change her 

travel time on the given route would be choosing a different trip timing or she must travel 
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a different route.5 

Given that our trip-level sample does not report the commuter’s exact origin and desti-

nation and there is only a single commute trip for each route, we are not able to condition 

on the route traveled directly. Our basic strategy is therefore to include the direct route 

characteristic, the physical distance of the route traveled, as well as proxies for the route 

characteristics, such as population density around the commuter’s residence, in our estima-

tion. We then employ the instrumental variable estimation and the household-fixed effect 

model estimation strategies to address the potential omitted variable bias concern. 

There may also be person characteristics capturing the commuter’s scheduling preference, 

which therefore would help predicting her trip timing choice. The bottleneck model shows 

that commuters having a particular common preference tend to sort into a particular interval 

of arrival times.6 The sorting of arrival times by preference type within route, however, is 

not an immediate empirical problem, since the queuing time of an individual who arrives at 

t ∈ (t0j , t1j ) on route j is always measured by Yj(t) − Yj (t0j ), even when this commuter has a 

different scheduling preference from the other who arrives at t0j , as long as their trips occur 

on the same route j. However, there is the possibility that commuter preferences correlated 

with trip timing choices may also be related to the choice of commute route that would 

actually determine the travel time. We therefore include person characteristics in order to 

control for their correlation with the choice of commute route. 

We now specify our empirical framework. The outcome variable is travel time of com-

muter i who travels commute route j, which we denote by Yij . Note that although we do 

not observe commute route directly, it is useful to explicitly have the route subscript j in 

5Note that the estimated relationship between trip timing and travel time may have a “causal” interpre-
tation once our estimation is conditioned on the route traveled. The causal effect is defined as the difference 
between the commuter’s actual travel time and her counterfactual free-flow travel time that would have been 
spent if she had alternatively chosen to arrive at the earliest timing with no queuing staying on the same 
route (see Angrist and Pischke, 2009). 

6For example, from the scheduling cost form given in footnote 2, consider a group of commuters with a 
higher ratio of the unit cost of travel time to the unit cost of schedule delay (i.e., α/β or α/γ) compared to 
the other commuters. Arnott et al. (1994) show that these travelers tend to want to avoid a long queue and 
arrive at a non-peak time . 
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our empirical model. Also note that since each commuter in our sample makes only one trip, 

the commuter id is equivalent to the trip id. 

Next, the treatment variable is the commuter’s binary trip timing choice, which we denote 

by Tij . The value for Tij is 0 if commuter i on route j arrived early enough to have zero 

queuing and 1 if she arrived in a peak time with queuing. In our conceptual framework, 

the time at which queuing initially arises differs by route (see t0j in (2)), but we are not 

able to allow the cut-off time for Tij to vary by route. We instead seek a time, before which 

commuters on any route do not queue at all, and use it as the cut-off time for Tij . The 

underlying assumption is that there exists at least one commuter on each route who travels 

before this early timing.7 We searched for the best cut-off time by each 30-minute interval, 

such that there is a statistically significant gap in travel time just before and after this arrival 

timing (see the specification in column (2) in Table 2). The resulting the cut-off time is set 

at 6:15, implying that the treated group in our specification is the commuters who arrived 

at a time between 6:15 and 11:00 and the control group is those who arrived before 6:15 

(but after 5:00). Note that we are excluding the trips completed either before 5:00 or after 

11:00 since we suspect that these trips significantly differ from the regular commute trips 

considered in our estimation.8 

Our estimating equation is written as 

X 
kYij = α + βTij + γkmj + Xij 

0 δ + uj + wij + �ij , (3) 
k 

where mj is one-way commute distance in 10 miles for route j. With the k superscripts 

7This assumption would make sense if commuter preferences were quite heterogeneous, especially in 
terms of the most preferred arrival timing, t ∗ . 

8About 79% out of the home-to-work morning commutes in our dataset have an arrival time between 
5:00 and 11:00. Note that the departure time variable as a trip timing choice is not used to define the 
treatment status. The reason is that trip distances are heterogeneous, so departure time actually provides 
little information on whether the commuter actually queued or not. In the bottleneck model, each commuter’s 
choice set Y (t) is a common knowledge, which means that the commuter choosing a departure time in effect 
is also choosing the corresponding arrival time. An unexpected congestion delay would result in an arrival 
that is later than the intended time. However, the resulting positive correlation between arrival time and 
travel time is also a social loss (regardless of it is intended or not), so we must not exclude these congestion 
delays in our estimation. 
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denoting exponents, mk
j are the polynomials of mj , which are included to capture the non-

linearity of the relationship between trip distance and travel time (γk are the coefficients). 

Xij is the vector of the proxies capturing the route characteristics. Specifically, it includes 

population density around the resident’s neighborhood, percentage of rental housing units 

(relative to owned units) in the neighborhood, urban-rural category measuring “contextual 

density” in the neighborhood, population size categories in the city where the commuter 

resides in (for smaller cities) as well as the city fixed effects (for larger cities). It also 

includes person characteristics, such as family income, to control for the preference related 

to residential and work location choices and thus to commute route choices. It also includes 

other person characteristics, such as age and gender, which would control for the driving 

habit affecting the travel speed. 

Our empirical specification is also explicit about unobservable route and person charac-

teristics. First, uj captures unobservable route characteristics, such as the road capacity, 

the speed limit, the number of traffic signs on the route, and the proximity to highways. 

We can easily think of the possibility that uj is correlated with both trip timing choices 

and congestion (travel time). For example, commuters traveling a highly congested route 

(for some unobservable reason) may tend to choose to travel at an off-peak time to avoid 

otherwise a long congestion delay. Second, wij is unobservable person characteristics, which 

may predict the commuter’s trip timing choice and the choice of commute route. We further 

discuss the concerns related to these omitted variables below. Finally, �ij is the error term 

satisfying the zero conditional mean. 

3 Data 

For estimation, we use the 2009 National Household Travel Survey (NHTS) dataset. We 

also use the Highway Performance Monitoring System (HPMS) dataset below, but we explain 

this dataset only in Section 5. The entire NHTS dataset is composed of household, person, 
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vehicle, and trip level samples. We mainly use the trip level sample, but we merge the person-

and the household-level samples into the main trip-level sample to obtain each commuter’s 

personal and household characteristics. Our dataset provides the key information at the 

trip level, such as the trip’s departure and arrival timings, trip duration (travel time), and 

physical distance between the origin and the destination. 

To construct our estimation sample, we select only commute trips made by car (of any 

vehicle type) driven by commuter herself. We exclude other commute modes (such as public 

transportation) and trips made for other purposes (such as shopping). For our estimation 

of morning congestion, we use morning commutes completed between 5:00 and 11:00. We 

also estimate evening congestion below using the sample of evening commute trips that took 

place between 15:00 and 23:00. We exclude commutes that took place on weekends. 

For the survey, each household is assigned a specific travel day and instructed to record all 

the family members’ trips that occurred on that day. It is therefore expected that each worker 

in the household reports one morning commute and one evening commute, respectively. 

There are nevertheless a few commuters (about 3% in the morning sample) who reported 

more than one commute trip in each of the morning and the evening intervals. We suspect 

that these observations are irregular, so we exclude these observations. Note however that 

each household may be composed of multiple workers and thus multiple commute trips in 

each time interval, and these trips are included in our estimation sample. 

Table 1 about here. 

Table 1 reports the summary statistics for the key variables computed from our morning 

commute sample. It shows that about 91% of morning commutes are completed at a time 

between 6:15 and 11:00 while the other 9% were completed between 5:00 and 6:15. The 

average arrival time at work is 7:47.9 . Using the mean trip duration (travel time) of 22.88 

9The arrival time variable is originally in the military format in the NHTS dataset, e.g., 06:10, 19:10, 
etc. We convert this raw variable into the one that follows the decimal system with the minute unit and 
normalize the value for 8:00 at 0. We use this converted variable to construct the variables used in our 
estimation 
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minutes and the mean commute distance of 13 miles, we calculate the average travel speed 

that is 34.2 miles per hour. From our sample of evening commutes, we find that the average 

travel time is 24.6 minutes and the average travel speed is 31.4 miles per hour (see Section 

4.5 for the evening sample construction). 

4 Estimation results 

4.1 OLS estimation results 

In our empirical specification (3), the main parameter of interest is β. Table 2 reports the 

OLS estimation results from the sample of morning commutes. Column (1) indicates that 

the estimate for β is 1.992, implying that if the average commuter had alternatively arrived 

before 6:15 while staying on the same route, she could then have reduced her travel time by 

1.992 minutes (8.7% of the mean travel time in the sample).10 Using the sample mean for 

commute distance, which is about 13 miles, the average queuing time per mile traveled is 

about 0.15 minutes (9 seconds). 

Table 2 about here. 

Column (2) in Table 2 presents the other specification, in which multiple arrival time in-

terval dummies (instead of the single dichotomous Tij variable) are included. The coefficient 

on each dummy indicates the predicted gap in travel time between a commuter who arrived 

at a time indicated by the dummy and the other who arrived before 6:15. For example, all 

other things equal, the average commuter who arrived at a time between 8:45 and 9:15 is 

predicted to spend 3.117 minutes more in commuting than those who arrived before 6:15. 

As expected, the average queuing time tends to be longer as the commuter’s arrival time 

is closer to the peak time, say 9:00, and get shorter afterward. Panel (a) in Figure 2 plots 

10We also used the log of travel time as the dependent variable and obtained 0.066 as the estimated 
coefficient on Tij , which implies about a 6.6% average difference in travel times by binary arrival timing 
choices. 
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the estimated coefficient for each arrival time dummy from column (2) along with its 95% 

confidence interval. The figure clearly illustrates the queue dynamics that is consistent with 

the bottleneck model’s prediction (see Figure 1). The figure also shows that the standard 

error of the coefficient estimator tends to increase as the arrival time gets closer to the noon. 

Note also that the average of the coefficients on the arrival time dummies from column (2) 

is 2.223, which is close in magnitude to the β estimate of 1.992 from column (1), which is 

an anticipated result.11 

Figure 2 about here. 

Table 2 also contains the estimated coefficients on the control variables, which show the 

dependency of travel time on these variables. For example, the household income has a 

negative coefficient, which implies that commuters with a higher income tend to reside in 

an area with a lower level of traffic congestion (e.g., less congested suburban area). We also 

find that travel time is longer for the commuters residing in a higher density area than those 

in a lower density area. Another interesting observation is that older drivers’ travel times 

are on average longer than younger drivers, which implies a significant difference in driving 

habit by age. 

4.2 Instrumental variables estimation results 

Our OLS estimator for β may be biased due to the omitted route and person character-

istics (see (3)). We now address this concern by employing the instrumental variable (IV) 

estimation strategy. 

We seek an instrument for trip timing choice (Tij ) that is uncorrelated with unobservable 

determinants of the travel time. Our key identifying assumption is that the travel time 

of a commuter traveling at a particular point in time is determined by the route traveled 

11In the bottleneck model, the commuters arrive at work at a constant rate of the bottleneck capacity 
during the peak hours (between 6:15 and 11:00), which implies that these numbers are predicted to be the 
same from the model. 
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rather than by the commuter herself. Therefore, our instrument predicting the commuter’s 

trip timing position relative to the other travelers on the same route should be uncorrelated 

with unobserved route characteristics or unobservable person characteristics related to the 

choice of route. Furthermore, since the choice of route is almost equivalent to the choice of 

residential and work location, our instrument should be uncorrelated with this choice. 

We use particular person characteristic, the commuter’s job category, as the main instru-

ment. In our dataset, each worker’s job is categorized into manufacturing, service, clerical, 

and professional. We find from the data that the worker’s job category is a strong predic-

tor of her trip timing choice. For example, manufacturing workers tend to arrive especially 

earlier compared to the other workers.12 

Our belief is that observationally identical workers who are in different job categories 

would not choose commute route (residential and job location) differently from each other 

in order to have a different level of congestion, considering that the included income variable 

would control for the worker’s subjective value of travel time. There may be particular routes 

dominated by workers with a common job, e.g., freeway near a big manufacturing facility. 

For our IV estimator to be biased in such case, however, the level of congestion for these 

routes must systematically be different from that for the other routes, which however seems 

implausible, since the included neighborhood and city characteristics would control for the 

cluster of particular workers. 

Table 3 about here. 

Table 3 presents our instrumental variable regression results. Our IV sets are not weak 

according to the conventional F tests, and the over-identification p-values are large enough, 

indicating that our IV sets are valid. 

Column (1) presents the second-stage regression result from the model using the manu-

facturing and the professional worker dummies as the instruments. We find that it is useful 

12From the scheduling cost in footnote 2, the preference of the manufacturing workers would be charac-
terized by an earlier t ∗ or a greater α/β than that of the other workers. 
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to still include the service category in our regression, so we omit only the clerical category 

in our first-stage regression (see column (3)). From this specification, the IV estimate for β 

is 2.283, which is a bit larger than the OLS estimate of 1.992. 

In column (2), we report the second-stage regression result from the model that also 

excludes the worker’s education status that is therefore used as IV. This specification yields 

a bit higher over-identification p-value than the model presented in column (1). In fact, 

the worker’s education may help explaining the nature of the job and thus predicting the 

worker’s trip timing more accurately. The estimate for β from this specification is 2.402, 

which is a bit larger than both the OLS estimate and the other IV estimate in column (1). 

In columns (3), we present the first-stage regression result. We find that the proportion 

of manufacturing workers who arrived earlier than 6:15 is much higher than for the other 

workers, and the professional and the service workers also tend to arrive earlier than the 

clerical workers. We also find that workers with a fewer years of education more tend to 

arrive earlier than 6:15. Another notable result is that commuters traveling a longer distance 

more tend to arrive earlier than 6:15 compared to those traveling a shorter distance (see the 

negative coefficient on m).13 

The next important issue is whether the arrival time dummy Tij may be treated as an 

exogenous variable in our empirical specification. For each of the IV regressions, we find that 

both the Durbin and the Wu-Hausman p values are significantly larger than any usual sig-

nificance levels, which means that we do not reject the null hypothesis that Tij is exogenous. 

We also carried out a Hausman test for comparison between 2SLS and OLS, which also leads 

us to conclude that the OLS and the IV estimates are statistically indistinguishable.14 We 

conclude that the omitted variables in our specification are not causing a significant bias in 

our OLS estimator. Note that this result does not imply that trip timing choice is indeed 

exogenous, but it suggests the necessity of including a rich set of the route and the person 

13See Fosgerau and Kim (2017), who offer a theoretical explanation on this empirical relationship between 
commute distance and trip timing. 

14The Hausman p value for each IV set presented in Table 3 is effectively equal to 1, so we do not reject 
the null that OLS is a consistent estimator. 
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characteristics in our estimation. 

4.3 Household fixed effects model estimation 

We further address the potential omitted variable bias concern by employing the house-

hold fixed effects model, which exploits multiple observations on commute trips within house-

hold. Each commuter in our sample makes only one commute trip, but there are households, 

each of which is composed of multiple workers and thus of multiple commute trips in the 

same morning. Our sample therefore has variations in the key variables within household. 

We write the household fixed effects model as 

X 
Yij = α + βTij + γkm kj + Xij 

0 δ + uh + ũj + w̃ij + �ij , (4) 
k 

where uh is unobservable household characteristics common to the workers in the household. 

This model allows us to eliminate the possibility that unobservable route characteristics 

around the worker’s residence, which is captured in uh, may cause a biased outcome. The 

model, however, does not control for unobservable characteristics of the travel route near 

each household member’s job location, which we denote by ũj . Also, since each worker 

within the household may have unobservable characteristics related to her own route choice, 

we still include w̃ij in the model. 

Table 4 about here. 

Table 4 presents the deviation-from-means estimation result for our household fixed ef-

fects model.15 Column (1) indicates that the average queuing time in each morning commute 

trip is about 1.798 minutes, which is a bit smaller than the OLS estimate of 1.992. Column 

(2) presents the model, in which multiple arrival time interval dummies are included. We 

15The household-fixed effects model does not include the family characteristics and the travel day in week 
dummies since these variables have no variation within household. So, we do not lose missing observations 
on these variables. Also, we do not exclude the commuters who make multiple commute trips in the same 
morning. As a result, the household fixed effects model has been estimated using a larger sample than that 
used for the OLS and the IV estimations. 
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find that the estimated coefficients from this model are also overall smaller than the OLS 

estimates from the same model (see column (2) in Table 2). 

The next question is whether the household fixed effects model estimation is preferred 

over the OLS estimation. Note that the OLS estimate of 1.992 is in between the IV estimates 

(2.283 or 2.402) and the household fixed effects model estimate (1.798). Since we did not 

find a significant bias in our OLS estimate from the comparison between the OLS and the 

IV estimates above, it is therefore more difficult to choose the fixed effects model estimate 

over the OLS estimate. In fact, the smaller β estimate in the household fixed effects model 

than the pooled OLS estimate is counter-intuitive, since it would then imply that commuters 

with a smaller uh (corresponding to a lower level of congestion) more tend to arrive earlier 

than 6:15.16 

4.4 Weighting estimation 

Under the assumption that our data is a random sample of commute routes in the US, 

we do not need to weight the route-specific average queuing time by the route mass function 

f(j) (see (2)). However, the NHTS data contains several “add-on” areas (particular states 

or cities), where survey participants are oversampled. If the add-on areas are systematically 

more or less congested than the other areas, then our estimate for the average queuing time 

in the whole population may be biased. 

We consider the weighting estimation methodology for this non-random sampling issue. 

A drawback of using the weighting estimation in our study is that since it is not equivalent to 

the maximum likelihood estimation, the standard likelihood ratio tests for over-identifying 

restrictions for our IV regression cannot be used. We could alternatively adopt the boot-

16We also carried out a Hausman test to compare the fixed effects and the random effects models. In 
both models presented in columns (1) and (2), the Hausman p-value is approximately 0, allowing us to safely 
reject the null hypothesis that the random effects model is unbiased. However, it does not imply that the 
fixed effects model estimate is preferred over our OLS estimate, because the fixed effects model allows us 
to include only the control variables that vary within household whereas the OLS estimation allows us to 
include a more extensive set of the control variables. The other issue is that the household fixed effects 
model does not utilize the information from the single-worker households. 
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strapping methodology used in Brownstone and Golob (2009) and Kim and Brownstone 

(2013)17 , but that would be useful only when we are certain to mainly use the weighting 

estimation, which however does not seem to be reasonable in our study. Furthermore, even 

when we are sure to use the weighting estimation, it is not yet clear as to which weight 

variable to use among various alternates. As suggested in Solon et al. (2015), we obtain 

alternate weighted estimates and compare them to our unweighted estimate, which allows 

us at least to judge to what extent, if any, and to which direction our unweighted estimate 

may be biased. 

We use 3 different weight variables. The first is the one provided by the original 2009 

NHTS. The NHTS weight variable is calculated to compensate for the different probabilities 

of being selected as a sample. For example, if residents in California were oversampled by a 

ratio of 2 to 1, then the weight of 1/2 is given to each Californian observation.18 However, 

since our estimation sample is not the same as the entire NHTS sample, we calculate our 

own weight variables based on the MSA and the state population sizes, respectively. Like 

the NHTS weight calculation, we compare the ratio of the number of residents in a particular 

region (MSA and state) in our sample to that in the US population to construct each of the 

MSA- and state-based weight variables. 

The weighting estimation using the NHTS weight, the MSA weight, and the state weight 

variables yields the β estimate of 1.646, 2.332, and 1.976, respectively. So, our unweighted 

estimate of 1.992 does not seem to deviate unidirectionally from these weighted estimates. 

We also carried out the formal test of DuMouchel and Duncan (1983) to judge whether there 

is a statistically significant difference between the weighted and the unweighted estimates. 

The test begins by estimating the model that adds the interaction term of the weight variable 

with each of all the explanatory variables to the original model.19 The null hypothesis for our 

17They tested for over-identifying restrictions by bootstrapping the variance of the difference between the 
restricted and the unrestricted reduced forms. 

18The NHTS calculates their weight variable using a more detailed formula and the information on the 
phone numbers and their associated zip codes. The NHTS then applies the base weight computed in this 
way to a more complicated formula that accounts for non-responses in their household interview attempts. 

19The explanatory variables interacted include all the variables presented in Table 2 and the constant 
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F test is that all the coefficients on the interaction terms are jointly zero. Our estimation 

result from the morning commutes indicates that when the NHTS weight and the state 

weight variables are used, the test does not reject the null hypothesis, which implies that 

there is no significant evidence that the unweighted estimate is biased due to the non-random 

sampling. We conducted the same analysis using the sample of evening commutes and found 

similar results. We therefore decided to mainly present the unweighted estimates and use 

them for our computation of the social cost of congestion. 

4.5 Congestion delay in the evening 

In this section, we estimate the expected queuing time for each evening commute trip. 

For estimation, we use the sample of commutes trips from work to home with an arrival time 

between 15:00 and 23:00. We assume that the commuters who arrived between 21:00 and 

23:00 have zero queuing time while those who arrived between 15:00 and 21:00 may have a 

positive queuing time. The threshold time (t1j in (2)) is set at 21:00 for the same reason 

as in the morning congestion estimation. In our sample, 95.3% of evening commutes are 

completed between 15:00 and 21:00, so they are in the treatment group. 

Table 5 about here. 

Table 5 reports the results for evening congestion, estimated using the unweighted OLS.20 

The estimated coefficient on the treatment variable is 1.818, which means that the commuters 

who arrived at a time between 15:00 and 21:00 on average spent 1.818 minutes (about 7.4% 

of the mean travel time in the evening sample) more in commuting than the other commuters 

on the same route who arrived after 21:00. Based on the mean commute distance of 12.87 

miles, the average evening commuter queues for about 0.14 minutes (8.5 seconds) to travel 

term, except for the MSA dummies and the day of week dummies. There are 28 interaction terms included. 
20We also used an IV estimation with the same instruments used in the morning congestion estimation. 

However, we find that our estimation may suffer from the weak IV problem, although the F statistics is still 
statistically non-zero. The IV regression adding the service worker dummy to our instrument set seems to 
be a bit better, but we nevertheless still prefer to present only the OLS estimates. The endogeneity test 
indicates that the OLS and the IV estimates do not differ significantly. 
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each mile. In column (2), we present the model including multiple arrival time interval 

dummies. We find that evening congestion is in its peak for the commuters who arrive 

around 18:00-19:00. Panel (b) in Figure 2 plots the point estimate for the coefficient on 

each arrival time dummy from column (2) along with its 95% confidence interval. The figure 

validates the inversed U-shaped queue dynamics predicted by the bottleneck model. 

4.6 Computation of the social cost of congestion 

By summing up our OLS estimate for the expected queuing time in the morning and 

that in the evening (1.992 and 1.818, respectively), we conclude that the average daily 

queuing time per worker is about 3.81 minutes (about 8% of the sample average of daily 

commute travel time). The opportunity cost of the queuing time expressed in the dollar 

unit is calculated by multiplying our estimate (3.81 minutes) by the unit cost of travel time 

(or simply the value of time). From the extensive literature review by Small and Verhoef 

(2007), we find that 50% of the wage rate is most appropriate as the value of time for typical 

workers. Since the Bureau of Labor Statistics reports that the average hourly wage for the 

US workers in 2010 is about $24, we therefore use $12 per hour as the value of time. We 

conclude that the inefficiency cost of congestion borne by each US worker in a workday is 

$0.762 (= (3.81/60) ∗ 12).21 

Here, we briefly comment on the magnitude of congestion delays estimated. Certainly, 

the congestion delay of about 2 minutes per commute trip sounds small considering the trips 

that occur on highly congested freeways in big cities. Indeed, our estimation indicates that 

commuters in particular big cities (such as Los Angeles) traveling a long distance experi-

ence a much longer congestion delay than just 2 minutes (see Table 10). This implies that 

this gap may be explained by the fact that we are using a random sample of all commute 

21Our monetary inefficiency cost estimate could be underestimated for the following reason. We find 
below that the queuing time tends to be longer for residents in a larger and richer city, which suggests 
that the worker’s queuing time may be positively correlated to her value of time. However, estimation of 
this correlation is beyond the scope of this paper, so we leave incorporation of this relationship for future 
research. 
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routes including the ones that are never congested, since these routes would offset the huge 

congestion in the other areas. It may also be explained by the fact that workers in a highly 

congested area may sort into the locations nearer the job to have a shorter distance for their 

regular commutes, which would contribute to a small congestion estimated in the absolute 

scale. Indeed, we find below that per-distance queuing time is not quite small especially for 

short-distance travelers (see Section 5.3). 

We now calculate the inefficiency cost of congestion borne by all US commuters through-

out the year. The Bureau of Labor Statistics reports that the total employment in the US 

in 2009 is about 142 million. The percentage of workers who commuted by a private vehicle 

(either driving alone or carpooling) in the US in 2009 is 86.1%22 , implying that about 122 

million workers used cars for their regular commutes in that year. We also assume that there 

are 260 workdays in a year. We therefore multiply our estimate for daily inefficiency cost 

per worker ($0.762) by 122 million (workers) and 260 (days) to conclude that the social cost 

of congestion borne by all US commuters in a year is about 24 billion dollars. Our estimate 

is very similar in magnitude to that of Couture et al. (2018), but ours includes only the 

costs from commute trips while Couture et al. (2018) use the trips of all purposes for their 

estimation of the Pigouvian deadweight loss. So, we can say that our social cost estimate is 

a bit larger than that of Couture et al. (2018). 

5 Where are more congested and why? 

In this section, we investigate the variation of congestion by city and residential location 

within city. 

22Source: U.S. Census Bureau, American Community Survey, 2009. 
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5.1 Congestion ranking of cities 

We first construct our congestion ranking of the cities. In our morning commute sample, 

18,992 commuters (49%) live in one of the major 49 MSAs, each of which has a population 

size that is larger than 1 million, and the rest (51%) live in the other area (either an MSA 

whose population size is smaller than 1 million or in an area that is not an MSA). Using the 

sample of morning commuters living in each of the 49 MSAs, we estimate the city-specific 

β, i.e., the expected queuing time for each morning commuter in the city, to construct our 

congestion ranking of the cities. 

Table 6 about here. 

Table 6 presents the OLS estimate for β and its 95% confidence interval estimated using 

the sample of each MSA. Among the 49 MSAs included in the dataset, we present only 17 

MSAs, each of which has a sample size of at least 300, since a smaller sample size exhibits 

a too high standard error and thus an unreliable estimate. Among the 17 cities, we find 

that Miami and Los Angeles are notably congested, and Washington, San Francisco, and 

Jacksonville are also highly congested. The proportion of the queuing time out of the travel 

time for an average commuter in Miami is about 23% while that for Tampa is only 3%. We 

also find that typical commuters in an MSA whose population size is larger than 1 million 

have about 3.457 minutes of queuing time while those in the other area have the average 

queuing time of only 0.679 minutes (see the bottom two rows in the table). Our congestion 

ranking is comparable to the speed index developed by Couture et al. (2018) and the county-

level congestion index of the Texas Transportation Institute (see Schrank and Lomax, 2009). 

We find that our ranking is overall consistent with these earlier congestion indices. 

5.2 Determinants of congestion 

We now address the question of why particular cities are more (or less) congested than 

the other cities. To allow congestion to depend on the city characteristics, we estimate the 
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following model: 

X 
kYij = α + β0Tij + β1Tij Rc + γkmj + Xij 

0 δ + uj + wij + �ij , (5) 
k 

where Rc indicates the characteristic of city c in which commuter i resides in. The expected 

queuing time, measured by the gap in travel times involved with peak and pre-6:15 arrivals, 

now depends on the city characteristic and is β0 + β1Rc. 23 

Following Couture et al. (2018), we consider two key city characteristics that potentially 

determine its congestion level. The first is the road provision in the city in which the com-

muter resides in as a supply-side congestion determinant. The second is the aggregate daily 

vehicle mileage traveled (VMT) by the residents in the city as a demand-side determinant. 

We also investigate within-city determinants of congestion below. 

To obtain the information on road stocks in the cities, we use the Highway Performance 

Monitoring System (HPMS) dataset, which reports the total length of roadways in miles at 

the county level. The HPMS classifies city roads into 6 categories: (i) interstate highways, 

(ii) other freeways and expressways, (iii) principal arterial, (iv) minor arterial, (v) collector, 

and (vi) local roads. We combine (i) and (ii) to define total freeways, which we denote by 

FWY. We combine (iii)-(v) to make the category of major urban roads, which we denote by 

MRU. Following Duranton and Turner (2011), we exclude local roads in our computation of 

the city’s road stock, since they are not systematically reported. 

Tables 7 about here. 

We match each county in the HPMS dataset to each of the 48 MSAs classified in our 

NHTS estimation sample.24 Table 7 reports the summary statistics of the road stock variables 

23The bottleneck model suggests that the average (expected) queuing time for commuters traveling route 
j is longer as the ratio of the number of route users to the bottleneck capacity (i.e., Nj /ψj ) is greater (see 
(1)). Effectively, we are testing this hypothesis using the city’s road stock per capita as ψj and the city’s 
aggregate daily VMT as Nj , regarding each city as a commute route j. 

24The HPMS data does not report the road stock information for West Palm Beach, so these observations 
are dropped from our estimation sample. 
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constructed at the MSA level. The mean of the total MSA road length is 10,357 miles, with 

New York endowed with the longest 43,696 miles of roads. The mean of the total MSA FWY 

length is 294 miles, which is only 3% of the mean of the total MSA road length. However, 

the share of MSA vehicle mileage traveled (VMT) on FWY out of the total MSA VMT is 

much larger and is on average about 39% (see the third row from the bottom). The HPMS 

also offers the total MSA “lane” miles of FWY, whose mean is 1,709, which implies that the 

average number of lanes of FWY is about 5.8 (= 1, 709/294). The mean of the total MSA 

miles of major urban roads (MRU) is 2,602, and the share of VMT on MRU out of the total 

MSA VMT is on average 47%. 

Table 8 about here. 

In columns (1)-(3) in Table 8, we report the estimation results for the specification (5), 

with each MSA road stock variable used for Rc. In these columns (as well as column (4)), we 

omit the MSA fixed effects and the MSA size category dummies since Rc varies only at the 

MSA level. We instead control for the population size of the MSA in which the commuter 

resides in. In column (1), the interacted city characteristic (Rc) is the total FWY length per 

1,000 capita of the MSA in which the commuter resides. The estimated coefficient on the 

interaction term is -14.694, which is significantly negative. We use this estimate to compare 

the expected queuing time of a commuter in the MSA whose FWY stock is the largest among 

all the included MSAs to that of a commuter in the MSA whose FWY stock is the smallest. 

Given that Kansas City has the largest stock of about 0.26 FWY miles per 1,000 capita and 

Los Angeles has the smallest FWY stock of about 0.06 miles per 1,000 capita, the expected 

gap in queuing time between the two cities is about 2.94 minutes (= 14.694 ∗ (0.26 − 0.06)). 

In column (2), we use the “lane” miles of FWY per 1,000 capita as the city characteristic 

Rc and find that the coefficient on the interaction term is -2.179. Based on this estimate, the 

expected gap in queuing time between a commuter in the city with the largest FWY lane 

miles per capita (Kansas City) and the other in the city with the smallest stock per capita 

(Chicago) is about 2.01 minutes. Finally, in column (3), we use the total MSA MRU length 
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per 1,000 capita as Rc and find that the coefficient on the interaction term is -2.194. The 

expected gap in queuing time between a commuter in the city with the largest MRU stock 

per capita (Grand Rapids) and the other in the city with the smallest MRU stock per capita 

(Miami) is about 2.11 minutes. 

These results suggest that the variation of congestion by city is largely explained by the 

city’s road stock per capita. This conclusion is comparable to that of Duranton and Turner 

(2011) who, unlike us, suggested that construction of new roads would not relieve traffic 

congestion in the city significantly since it would then induce a proportionate increase in the 

city’s total VMT. A difference is that while we are investigating the level of congestion for 

the residents in the city, the dependent variable in Duranton and Turner (2011) is the city’s 

total VMT. Another difference is that Duranton and Turner (2011) adopts the instrumental 

variable strategy to endogeneize their road stock variable while we do not have much causal 

interpretation here. Most of all, we are estimating using a cross-sectional variation across 

cities to show that congestion is lower in city with a higher level of road stock. In the 

meantime, Duranton and Turner (2011) focus on overtime adjustment to highway supply 

expansion for given city. These are quite different identification strategy for estimation of 

the relationship between road and congestion. 

We next consider the demand-side determinant of congestion. The HPMS offers the 

estimate for aggregate daily VMT for residents in each city. We divide the total MSA VMT 

by the total MSA road miles (including both FWY and MRU) to construct the total VMT 

per road mile, which we use as the city characteristic Rc in (5). According the estimation 

result reported in column (4), the estimated coefficient on the interaction term is significantly 

positive and is 0.17. Based on this estimate, the expected gap in queuing time between a 

commuters in the city with the highest overall vehicle travel demand (Miami) and the other 

in the city with the lowest demand (Milwaukee) is about 3.4 minutes.25 Thus, our demand-

side variable seems to explain a bit larger portion of congestion variation than any of the 

25In Miami, the aggregate daily VMT per road mile is 32.29, and that in Milwaukee is 12.27, so 3.4 
minutes is computed by 0.17 ∗ (32.29 − 12.27). 
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road stock variables. 

Finally, we explore within-city determinants of congestion by adding each within-city 

characteristic interacted with Tij to our main empirical model. In column (5) in Table 8, 

we consider population density around the neighborhood in which the commuter resides 

in, measured by population per 1/10 square mile (tract level), as the interacted variable. 

As expected, the estimated coefficient on the interaction term is positive, implying that 

commuters residing in a higher density neighborhood tend to have a longer queuing time 

than those in a lower density neighborhood. In column (6), urban-rural dummies interacted 

with Tij are included.26 As expected, the coefficients on the interaction terms are all positive, 

implying that commuters residing in urban, suburban, and second-city categories have on 

average a longer queuing time than those residing in the countryside (the left-out category). 

Finally, in column (7), we include the family income interacted with Tij in our model. We 

find that queuing times are overall longer for higher-income workers, but the coefficient on 

the family income itself is negative. Our interpretation is that higher income earners (with a 

higher value of time) tend to live in a more congested area while trying to reduce her travel 

time, e.g., by taking an express lane. 

5.3 Route distance and queuing time 

Our estimation of the expected queuing time is conditioned on the trip distance. However, 

we expect that commuters traveling a longer distance queue for a longer time than those 

traveling a shorter distance. We further suspect that the relationship between queuing time 

and trip distance is concave, which means that the relationship between travel speed and 

trip distance is positive. This relationship may be due to a fixed time cost of travel, such as 

the time spent for parking, which would not depend on the trip distance. Also, commuters 

traveling a longer distance are more likely to be suburban residents who would pass less 

26The urban-rural dummies measure the resident’s neighborhood density in a larger geographic scope. 
Kim and Brownstone (2013) find that this variable is very helpful in explaining the resident’s vehicle travel 
demand. 
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congested suburban locations. It may also be due to the fact that commuters in a highly 

congested area may choose to live nearer the job to have a shorter trip. 

To investigate the relationship between queuing time and commute distance, we estimate 

our main model using each subsample of morning commutes sorted by commute distance. 

We consider 5 distance groups including mj ≤ 0.5, 0.5 < mj ≤ 1, 1 < mj ≤ 2, 2 < mj ≤ 4, 

and mj > 4, where mj is trip distance in 10 miles for route j. The estimation result for each 

subsample is reported in Table 9. We find that the expected queuing time is longer as the 

commuter travels a longer distance. In particular, the expected queuing time of a commuter 

whose trip distance is shorter than 5 miles (mj is in 10 miles) is only 0.328 minutes while 

that for a commuter whose distance is longer than 40 miles is 5.432 minutes. 

Table 9 about here. 

To see whether the relationship between queuing time and trip distance is concave, we 

divide the point estimate for β (expected queuing time) by the mean trip distance in mile 

from each subsample. The calculation results are presented in the next row. We find that 

from the second group (with the trip distance between 5 and 10 miles) to the last group 

(with the distance above 40 miles), per-mile queuing time tends to decrease. This confirms 

that the relationship between travel time and trip distance is overall concave, or equivalently, 

that travel speed is an increasing function of the trip distance.27 

6 Congestion toll 

In this section, we try to empirically quantify the optimal congestion toll. It is shown in 

the bottleneck model that the optimal toll imposed based on the commuter’s arrival time 

potentially fully recovers the inefficiency cost from congestion. The toll achieves this goal by 

27This result also suggests that our expected queuing time estimate conditioned on the trip distance may 
be sensitive to non-random sampling of commute routes, especially in terms of distance. Our estimation 
relies on the belief that the distribution of trip distances in the NHTS sample does not deviate much from 
its distribution in the population. Our weighting estimation in Section 4.4 supports the hypothesis that 
non-random sampling does not cause a significant bias. 
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rescheduling commutes, so that the commuters now depart only at the rate of the bottleneck 

capacity and thus do not form any queue with no delay in their arrival times relative to 

under laissez-faire. Under the optimal toll, each commuter attains the same commuting 

cost as under laissez-faire, which implies that the toll revenue is exactly the same as the 

inefficiency cost under laissez-faire. It is also shown that the optimal toll amount is exactly 

same as the laissez-faire queuing time cost as a function of arrival time, i.e., α(Y (t) − Y (t0)) 

for t ∈ [t0, t1], where α is the monetary unit cost of travel time (value of time). 

This paper has provided the framework to estimate the queuing time Y (t) − Y (t0) as 

a function of arrival time (t) conditional on the commute route, which would therefore 

quantify the optimal toll for the commuters traveling the given route (with an appropriate 

use of α). However, since we do not observe commute routes directly, we are unable to 

perfectly identify Y (t) − Y (t0) for each separate route. In this paper, we sort the commuters 

by city and commute distance, viewing the commuters sorted in each group traveling an 

identical route. We then estimate the queuing time as a function of t, i.e., Y (t) − Y (t0), for 

the commuters in each group. 

Table 10 about here. 

Table 10 shows the estimation results from two representative MSAs, one that is highly 

congested Los Angeles and the other that is less congested Greensboro. Each model in the 

table includes multiple arrival time interval dummies and is estimated separately for the 

4 commute-distance groups using the sample of morning commuters residing in each city. 

For example, according to the table, a commuter in Los Angeles whose trip distance is 10-

20 miles has the expected queuing time of 10.122 minutes if she would arrive around 8:00. 

When $12 per hour is used as the value of time, this commuter would be charged a toll of 

about $2.02. As expected, the expected queuing time as a function of arrival time and thus 

the optimal toll has an inversed U shape. Also, the commuters traveling a longer distance 

queue for a longer time and thus are charged a higher toll. We also find that the estimated 

coefficients on the arrival time dummies are much smaller for the Greensboro residents than 
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for the Los Angeles residents, which implies that the residents in Greensboro are charged a 

much smaller (or zero) congestion toll compared to the Los Angeles residents. 

A city government may adopt our framework to quantify a practically implementable 

toll that would be a function of arrival time and trip distance. A more detailed information 

on work-home locations (commute routes) of a larger sample of commuters would improve 

the estimates from ours. If the employer’s interest were to be consistent with the city 

government’s, then the employer would identify each employee’s hypothetical travel times 

as a function of arrival time using real-time traffic information (e.g., Google Maps) and 

the employee’s home address, which would then give the employee-specific time-varying toll 

charge. 

7 Conclusion 

This paper is the first study that formally used the bottleneck model framework to 

empirically measure the social cost of congestion. We find that the inefficiency time cost 

for each average daily US commuter is about 3.8 minutes (about 8% of the sample mean 

of travel time). Although this individual cost sounds small, our calculation shows that the 

annual social cost of congestion from commute trips wasted in the US is about 24 billion 

dollars. 

We have also investigated the variation in congestion over time in a day and by residential 

location (especially by city). An important finding is that a higher level of congestion in a 

city may be attributed to an insufficient road stock in the city. This finding, however, does 

not imply that an increase in road stock would have a welfare benefit that is comparable 

to imposition of the optimal congestion toll. This paper has provided a meaningful starting 

point toward empirical quantification of the optimal congestion toll. 

The most interesting extension from our estimation would use “big data”, such as traffic 

data from Google Maps, as well as the information on actual commute routes (home and 
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work addresses) to estimate the queuing times and the congestion tolls in a greater detail. 

Another future work may incorporate trips of all purposes (not just commutes) to estimate 

the social cost of congestion from all trips. One could also add some causal interpretations 

to our estimated relationship between road stock (or vehicle travel demand) and the level of 

congestion. 
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Figure 1: Travel time as a function of arrival time 
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Figure 2: Queuing time estimate by arrival time 
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(b) Evening 
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Notes: In panel (a), each dot represents the estimated coefficient on each arrival time 
interval dummy from the specification presented in column (2) in Table 2. Vertical 
spikes around each point estimate represent the 95% confidence interval constructed 
using robust standard errors. Panel (b) plots the estimated coefficients from the sample 
of evening commutes, which is presented in column (2) in Table 5, as well as their 
confidence intervals. 
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Table 1: Summary statistics 

Mean Std Dev 
Key variables 
Travel time (Y ) 22.88 (17.35) 
Arrived between 6:15 and 11:00 (T ) 0.91 
Arrival time at work (in minute) 7:47 am (69.02) 
Commute distance in 10 miles (m) 1.30 (1.37) 

aControl variables 
Population per 1/10 sq mile (population density) b 27.63 (39.24) 
% of rental units relative to owned units b 25.11 (18.21) 
Neighborhood category is urban c 0.08 
Neighborhood category is second city 0.17 
Neighborhood category is suburban 0.25 
Neighborhood category is town 0.50 
Family income in 1,000 dollars 78.29 (34.61) 
Family size 2.88 (1.26) 
Number of workers 1.78 (0.71) 
Race is white 0.87 
Female 0.49 
Age 48.45 (11.90) 
Bachelor degree 0.55 
Graduate degree 0.20 
Job category is service 0.21 
Job category is manufacturing 0.15 
Job category is professional 0.50 
Job category is clerical 0.15 

Notes: The summary statistics are calculated from the estimation sample 
of morning commutes. The sample size is 38,868. aThe list of the control 
variables presented in this table is not exhaustive. bThese variables are 
measured at the tract level. cThe urban-rural category variable measures 
“contextual density”, the density of a larger and more relevant geographic 
scope (see Kim and Brownstone (2013) for a more detailed explanation on 
this variable). 
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Table 2: OLS estimation results 

Dependent variable: Travel time (Y ) 
(1) (2) 

Trip timing choice variables 
Arrived between 6:15 and 11:00 (T ) 1.992∗∗∗ (0.139) 
Arrived between 6:15 and 6:45 0.661∗∗∗ (0.179) 
Arrived between 6:45 and 7:15 1.292∗∗∗ (0.163) 
Arrived between 7:15 and 7:45 1.625∗∗∗ (0.158) 
Arrived between 7:45 and 8:15 2.640∗∗∗ (0.157) 
Arrived between 8:15 and 8:45 2.947∗∗∗ (0.185) 
Arrived between 8:45 and 9:15 3.117∗∗∗ (0.215) 
Arrived between 9:15 and 9:45 2.926∗∗∗ (0.288) 
Arrived between 9:45 and 10:15 2.000∗∗∗ (0.284) 
Arrived between 10:15 and 10:45 2.443∗∗∗ (0.482) 
Arrived between 10:45 and 11:00 2.586∗∗∗ (0.624) 
Distance and its polynomials 
m 14.042∗∗∗ (0.206) 14.137∗∗∗ (0.206) 

2m -0.674∗∗∗ (0.066) -0.689∗∗∗ (0.066) 
3m 0.033∗∗∗ (0.005) 0.033∗∗∗ (0.005) 
4m -0.0005∗∗∗ (0.0001) -0.0005∗∗∗ (0.0001) 

Other control variables 
Population density 0.019∗∗∗ (0.002) 0.019∗∗∗ (0.002) 
% of rental units relative to owned units -0.020∗∗∗ (0.003) -0.021∗∗∗ (0.003) 
Neighborhood category is urban a 1.138∗∗∗ (0.262) 1.088∗∗∗ (0.260) 
Neighborhood category is second city 0.476∗∗∗ (0.141) 0.459∗∗∗ (0.141) 
Neighborhood category is suburban 0.931∗∗∗ (0.126) 0.884∗∗∗ (0.125) 
MSA pop size is 250k-500k b 0.092 (0.160) 0.104 (0.160) 
MSA pop size is 500k-1,000k 0.439∗∗∗ (0.151) 0.414∗∗∗ (0.151) 
Family income in 1,000 dollars -0.0044∗∗∗ (0.0015) -0.0054∗∗∗ (0.0015) 
Family size 0.040 (0.058) 0.035 (0.057) 
Number of workers -0.173∗∗ (0.072) -0.170∗∗ (0.071) 
Number of vehicles owned -0.082∗ (0.042) -0.061 (0.042) 
Carpool 0.094 (0.196) 0.159 (0.195) 
Owner-occupier -0.007 (0.163) -0.032 (0.162) 
Has kids -0.344∗∗ (0.137) -0.404∗∗∗ (0.137) 
Race is white c -0.565∗∗∗ (0.196) -0.524∗∗∗ (0.196) 
Race is black 0.482 (0.332) 0.568∗ (0.331) 
Race is hispanic 0.463∗ (0.239) 0.510∗∗ (0.238) 
Female -0.091 (0.083) -0.280∗∗∗ (0.084) 
Age 0.036∗∗∗ (0.004) 0.037∗∗∗ (0.004) 
Bachelor degree d -0.045 (0.103) -0.175∗ (0.103) 
Graduate degree 0.103 (0.132) -0.146 (0.132) 
Job category is service -0.283∗∗∗ (0.104) -0.443∗∗∗ (0.105) 
n 38,868 38,868 
R2 0.788 0.789 

Notes: Robust standard errors are in parentheses. All models include a constant, MSA 
fixed effects, and day in week dummies. In each model, the left-out group is the com-
muters who arrived before or at 6:15. aThe left-out group is those living in town or 
country. bThe left-out group is those living in an MSA with a population size less than 
250k. Residents in an MSA with a population size over 1,000k are controlled by the MSA 
fixed effects. cThe left-out group is Asians and other minorities. dThe left-out group is 
those with a high school diploma or a lower education level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ 

p < 0.01. 
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Table 3: IV estimation results 

Dependent variable: Travel time (Y ) Travel time (Y ) T 
(1) (2) (3) 

Trip timing choice variable 
Arrived between 6:15 and 11:00 (T ) 2.283∗∗ (1.029) 2.402∗∗∗ (0.783) 
Distance and its polynomials 
m 14.049∗∗∗ (0.210) 14.049∗∗∗ (0.208) -0.0236∗∗∗ (0.0032) 

2m -0.675∗∗∗ (0.066) -0.674∗∗∗ (0.066) 0.0032∗∗∗ (0.0008) 
3m 0.033∗∗∗ (0.005) 0.033∗∗∗ (0.005) -0.00011∗∗ (0.00004) 
4m -0.0005∗∗∗ (0.0001) -0.0005∗∗∗ (0.0001) 0.0000011∗ (0.0000006) 

Other control variables 
Population density 0.019∗∗∗ (0.002) 0.019∗∗∗ (0.002) 0.00005 (0.0006) 
% of rental units relative to owned units -0.020∗∗∗ (0.003) -0.020∗∗∗ (0.003) -0.00009 (0.00009) 
Neighborhood category is urban 1.140∗∗∗ (0.261) 1.142∗∗∗ (0.261) -0.0096 (0.0082) 
Neighborhood category is second city 0.477∗∗∗ (0.141) 0.476∗∗∗ (0.141) -0.0042 (0.0050) 
Neighborhood category is suburban 0.930∗∗∗ (0.126) 0.931∗∗∗ (0.126) 0.0019 (0.0041) 
MSA pop size is 250k-500k 0.093 (0.160) 0.094 (0.160) -0.0039 (0.0065) 
MSA pop size is 500k-1,000k 0.435∗∗∗ (0.152) 0.434∗∗∗ (0.151) 0.0145∗∗ (0.0059) 
Family income in 1,000 dollars -0.0045∗∗∗ (0.0015) -0.0044∗∗∗ (0.0015) 0.0002∗∗∗ (0.0001) 
Family size 0.040 (0.058) 0.041 (0.058) -0.0001 (0.0019) 
Number of workers -0.174∗∗ (0.072) -0.178∗∗ (0.072) 0.0042∗ (0.0025) 
Number of vehicles owned -0.081∗ (0.042) -0.082∗ (0.042) -0.0005 (0.0015) 
Carpool 0.089 (0.195) 0.091 (0.196) 0.0099∗ (0.0060) 
Owner-occupier -0.008 (0.163) -0.011 (0.163) 0.0031 (0.0063) 
Has kids -0.347∗∗ (0.137) -0.348∗∗ (0.137) 0.0108∗∗ (0.0045) 
Race is white -0.569∗∗∗ (0.196) -0.579∗∗∗ (0.196) 0.0119∗∗ (0.0060) 
Race is black 0.486 (0.332) 0.480 (0.332) -0.0130 (0.0094) 
Race is hispanic 0.468∗∗ (0.239) 0.472∗∗ (0.239) -0.0114∗ (0.0069) 
Female -0.113 (0.112) -0.125 (0.100) 0.0416∗∗∗ (0.0031) 
Age 0.036∗∗∗ (0.004) 0.037∗∗∗ (0.004) -0.0005∗∗∗ (0.0001) 
Bachelor degree -0.065 (0.121) 0.0449∗∗∗ (0.0043) 
Graduate degree 0.069 (0.172) 0.0839∗∗∗ (0.0048) 
Job category is service -0.290∗∗∗ (0.105) -0.302∗∗∗ (0.103) -0.0322∗∗∗ (0.0043) 
Job category is manufacturing -0.1596∗∗∗ (0.0069) 
Job category is professional -0.0304∗∗∗ (0.0037) 
n 38,868 38,868 38,868 
R2 0.788 0.788 0.074 
First-stage F statistic 267.1 247.2 
Overidentification test p-value 0.260 0.398 
Endogeneity test p-value 0.775 0.610 

Notes: Robust standard errors are in parentheses. All models include a constant, MSA fixed effects, and day in 
week dummies. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. 
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Table 4: Household fixed-effects model estimation results 

Dependent variable: Travel time (Y ) 
(1) (2) 

Arrived between 6:15 and 11:00 (T ) 1.798∗∗∗ 

(0.311) 
Arrived between 6:15 and 6:45 0.704∗ 

(0.378) 
Arrived between 6:45 and 7:15 1.231∗∗∗ 

(0.359) 
Arrived between 7:15 and 7:45 1.596∗∗∗ 

(0.366) 
Arrived between 7:45 and 8:15 2.542∗∗∗ 

(0.362) 
Arrived between 8:15 and 8:45 2.730∗∗∗ 

(0.408) 
Arrived between 8:45 and 9:15 2.588∗∗∗ 

(0.459) 
Arrived between 9:15 and 9:45 2.513∗∗∗ 

(0.517) 
Arrived between 9:45 and 10:15 2.161∗∗∗ 

(0.542) 
Arrived between 10:15 and 10:45 1.805∗∗∗ 

(0.614) 
Arrived between 10:45 and 11:00 2.748∗∗∗ 

(0.945) 
m 14.985∗∗∗ 15.065∗∗∗ 

(0.446) (0.442) 
2m -1.043∗∗∗ -1.060∗∗∗ 

(0.167) (0.165) 
3m 0.073∗∗∗ 0.074∗∗∗ 

(0.016) (0.016) 
4m -0.0015∗∗∗ -0.0016∗∗∗ 

(0.0004) (0.0004) 
Carpool 0.433 0.462 

(0.419) (0.414) 
Female -0.267∗∗ -0.465∗∗∗ 

(0.128) (0.132) 
Age 0.018∗ 0.022∗∗ 

(0.009) (0.009) 
Bachelor degree -0.002 -0.056 

(0.246) (0.247) 
Graduate degree -0.578∗ -0.615∗ 

(0.327) (0.327) 
Job category is service -0.498∗∗ -0.638∗∗∗ 

(0.222) (0.224) 
n 41,724 41,724 
Number of groups 33,960 33,960 
R2 0.795 0.796 

Notes: Robust standard errors are in parentheses. All models 
include a constant and MSA fixed effects. Only the variables 
that have variation within household are included in each model. 
∗ p < 0.05, ∗∗∗ p < 0.10, ∗∗ p < 0.01. 
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Table 5: OLS estimation results from the sample of evening commutes 

Dependent variable: Travel time (Y ) 

Arrived between 15:00 and 21:00 
(1) 

1.818∗∗∗ 
(2) 

Arrived between 15:00 and 16:00 
(0.271) 

0.114 

Arrived between 16:00 and 17:00 
(0.285) 
0.987∗∗∗ 

Arrived between 17:00 and 18:00 
(0.286) 
2.045∗∗∗ 

Arrived between 18:00 and 19:00 
(0.279) 
3.435∗∗∗ 

Arrived between 19:00 and 20:00 
(0.302) 
2.156∗∗∗ 

Arrived between 20:00 and 21:00 
(0.361) 
0.648 
(0.403) 

n 
R2 

33,994 
0.734 

33,994 
0.737 

Notes: Robust standard errors are in parentheses. All mod-
els include the same control variables as in Table 2, as well as 
a constant, MSA fixed effects, and day in week dummies. In 
each model, the left-out group is the commuters who arrived 

∗ p < 0.05, ∗∗∗after 21:00. p < 0.10, ∗∗ p < 0.01. 
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Table 6: Queuing time estimate by city 

Sample category β estimate 95% confidence β per n 
interval for β mile b 

Miami-Fort Lauderdale, FL 6.227 [3.390, 9.064] 0.506 742 
Los Angeles-Riverside-Orange County, CA 5.743 [4.331, 7.156] 0.395 1,819 
Washington-Baltimore, DC-MD-VA-WV 4.749 [2.448, 7.049] 0.249 759 
San Francisco-Oakland-San Jose, CA 4.651 [2.729, 6.573] 0.336 1,005 
Jacksonville, FL 4.508 [2.073, 6.943] 0.300 315 
Houston-Galveston-Brazoria, TX 4.116 [2.635, 5.597] 0.265 1,190 
Dallas-Fort Worth, TX 4.020 [2.424, 5.616] 0.273 1,840 
Atlanta, GA 3.551 [-0.629, 7.731] 0.220 309 
New York-Northern New Jersey-Long Island, NY-NJ-CT-PA 3.190 [1.597, 4.783] 0.207 1,560 
San Antonio, TX 3.123 [1.248, 5.000] 0.233 571 
San Diego, CA 2.543 [1.385, 3.701] 0.187 1,618 
Sacramento-Yolo, CA 2.410 [0.349, 4.472] 0.186 322 
Austin-San Marcos, TX 2.244 [-1.667, 6.156] 0.171 493 
Orlando, FL 2.011 [-1.604, 5.627] 0.155 303 
Greensboro-Winston-Salem-High Point, NC 1.594 [0.019, 3.169] 0.129 1,590 
Norfolk-Virginia Beach-Newport News, VA-NC 1.586 [-0.380, 3.552] 0.130 995 
Tampa-St. Petersburg-Clearwater, FL 0.715 [-5.272, 6.702] 0.060 475 
MSAs whose population is larger than 1 million a 3.457 [3.024, 3.890] 0.248 18,992 
MSAs whose population is smaller than 1 million and non-MSAs 0.679 [0.346, 1.013] 0.056 19,876 

Notes: The listed MSAs have a population size that is larger than 1 million and a sample size that is greater than 
300. The estimated model is the same as the basic model presented in the first column in Table 2, except that we 
do not include the MSA fixed effects and the MSA population categories. aFor estimation using this sample, we do 
include the MSA fixed effects. bFor each MSA, the β estimate is divided by the MSA’s mean trip distance in mile. 

Table 7: Summary statistics of the MSA-level road provision variables 

Mean Std Dev Min Max Obs 
Miles of all roadways 10,357 8,196 3,203 43,696 48 
Miles of freeways (FWY) a 294 217 67 1,214 48 
Miles of FWY per 1,000 MSA population 0.12 0.05 0.06 0.26 48 
Lane miles of FWY 1,709 1,423 375 7,225 48 
Lane miles of FWY per 1,000 MSA population 0.68 0.21 0.33 1.25 48 
Miles of major urban roads (MRU) b 2,602 2,298 695 11,327 48 
Miles of MRU per 1,000 MSA population 0.99 0.25 0.55 1.51 48 
Share of vehicle mileage traveled on FWY 0.39 0.08 0.22 0.55 48 
Share of vehicle mileage traveled on MRU 0.47 0.07 0.32 0.63 48 
MSA population in 1 million 2.98 3.41 0.71 18.70 48 

Notes: The data source is the 2008 edition of the Highway Performance and Monitoring 
System (HPMS), which has the information on road provision for all large MSAs (over 1 
million) in our NHTS sample, except for the West Palm Beach MSA. aFWY includes the 
HPMS categories of “interstate highways” and “other freeways and expressways”. bMRU 
includes the HPMS categories of “principle arterial”, “minor arterial”, and “collector”. We 
exclude the HPMS category of “local roads”. 
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Table 8: Estimation results from the models including interaction term 

Dependent variable: Travel time (Y ) 
(1) (2) (3) (4) (5) (6) (7) 

Interaction term 
T × Miles of FWY per 1,000 capita -14.694∗∗∗ 

(4.107) 
T × Lane miles of FWY per 1,000 capita -2.179∗∗ 

(0.912) 
T × Miles of MRU per 1,000 capita -2.194∗∗∗ 

(0.813) 
T × Total VMT (in 1000) per road mile 0.170∗∗∗ 

(0.039) 
T × Population density 0.0195∗∗∗ 

(0.0042) 
T × Urban 2.518∗∗∗ 

(0.525) 
T × Second city 0.712∗ 

(0.383) 
T × Suburban 1.829∗∗∗ 

(0.343) 
T × Family income in 1,000 dollars 0.0270∗∗∗ 

(0.0041) 
Other variables (list of the reported variables is not exhaustive) a 

Arrived between 6:15 and 11:00 (T ) 5.177∗∗∗ 4.946∗∗∗ 5.393∗∗∗ -0.428 1.462∗∗∗ 1.270∗∗∗ 0.111 
(0.539) (0.672) (0.767) (0.907) (0.167) (0.179) (0.322) 

Miles of FWY per 1,000 capita 1.350 
(4.124) 

Lane miles of FWY per 1,000 capita -0.852 
(0.909) 

Miles of MRU per 1,000 capita 1.540∗ 

(0.788) 
Total VMT (in 1000) per road mile -0.101∗∗∗ 

(0.038) 
MSA population in 1 million b 0.019 0.015 0.075∗∗∗ 0.079∗∗∗ 

(0.016) (0.015) (0.015) (0.013) 
Population density 0.0183∗∗∗ 0.0186∗∗∗ 0.0187∗∗∗ 0.0184∗∗∗ 0.0014 0.0188∗∗∗ 0.0188∗∗∗ 

(0.0022) (0.0022) (0.0022) (0.0023) (0.0043) (0.0022) (0.0022) 
Urban 1.491∗∗∗ 1.500∗∗∗ 1.897∗∗∗ 1.731∗∗∗ 1.133∗∗∗ -1.145∗∗ 1.131∗∗∗ 

(0.283) (0.282) (0.279) (0.282) (0.261) (0.532) (0.262) 
Second city 0.636∗∗∗ 0.671∗∗∗ 0.838∗∗∗ 0.745∗∗∗ 0.466∗∗∗ -0.175 0.482∗∗∗ 

(0.219) (0.219) (0.218) (0.219) (0.141) (0.373) (0.141) 
Suburban 1.202∗∗∗ 1.224∗∗∗ 1.452∗∗∗ 1.347∗∗∗ 0.923∗∗∗ -0.746∗∗ 0.932∗∗∗ 

(0.184) (0.183) (0.181) (0.184) (0.126) (0.336) (0.126) 
Family income in 1,000 dollars -0.0027 -0.0024 -0.0019 -0.0023 -0.0043∗∗∗ -0.0044∗∗∗ -0.0289∗∗∗ 

(0.0023) (0.0023) (0.0023) (0.0023) (0.0015) (0.0015) (0.0039) 
MSA fixed effects c No No No No Yes Yes Yes 
n 18,788 18,788 18,788 18,788 38,868 38,868 38,868 
R2 0.743 0.743 0.742 0.742 0.788 0.788 0.788 

Notes: Robust standard errors are in parentheses. aOther than the control variables reported in this table, all models include 
the same control variables presented in Table 2 as well as a constant and day in week dummies. bFor the MSA population 
information, we use the 2008 edition of the HPMS, which we are using to acquire the MSA road provision information. cThe 
models in columns (1)-(4) do not include the MSA effects, because they include the road provision and the total VMT variables, 

∗which are at the MSA level. In these columns, we use the sample of commuters who live in the 48 large MSAs. p < 0.10, ∗∗ 

p < 0.05, ∗∗∗ p < 0.01. 
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Table 9: Queuing time estimate by trip distance 

Dependent variable: Travel time (Y ) 
m ≤ 0.5 0.5 < m ≤ 1 1 < m ≤ 2 2 < m ≤ 4 m > 4 

Coefficient on arrival between 0.328∗ 1.706∗∗∗ 2.143∗∗∗ 3.696∗∗∗ 5.432∗∗∗ 

6:15 and 11:00 (β) (0.168) (0.217) (0.256) (0.403) (1.216) 
β per mile 0.116 0.216 0.144 0.132 0.093 
n 12,570 9,121 9,790 5,893 1,494 
R2 0.309 0.185 0.207 0.279 0.711 

Notes: Robust standard errors are in parentheses. All models include the same control variables as 
in Table 2, as well as a constant, MSA fixed effects, and day in week dummies. OLS is used for 

∗ p < 0.05, ∗∗∗estimation. p < 0.10, ∗∗ p < 0.01. 

Table 10: Queuing time estimate by arrival time and trip distance (Los Angeles and Greens-
boro) 

Dependent variable: Travel time (Y ) 
Los Angeles MSA Greensboro MSA 

m ≤ 0.5 0.5 < m ≤ 1 1 < m ≤ 2 m > 2 m ≤ 0.5 0.5 < m ≤ 1 1 < m ≤ 2 m > 2 
Arrived between 6:15 and 6:45 3.764 0.979 1.512 5.635∗∗ -1.824 0.987 0.540 3.594 

(2.617) (1.402) (1.645) (2.834) (2.567) (1.041) (1.706) (2.634) 
Arrived between 6:45 and 7:15 2.039∗ 3.580∗∗ 3.734∗ 3.136 -0.811 0.847 1.738 1.287 

(1.118) (1.484) (1.938) (2.400) (2.549) (1.026) (1.634) (2.267) 
Arrived between 7:15 and 7:45 1.848∗∗ 2.310∗ 3.569∗∗ 6.998∗∗∗ -1.502 1.085 0.008 2.857 

(0.903) (1.341) (1.509) (2.653) (2.599) (0.912) (1.618) (2.214) 
Arrived between 7:45 and 8:15 2.421∗∗∗ 3.479∗∗ 10.122∗∗∗ 11.232∗∗∗ -0.691 3.194∗∗∗ 1.421 3.770∗ 

(0.823) (1.584) (1.680) (2.664) (2.603) (0.961) (1.518) (2.131) 
Arrived between 8:15 and 8:45 3.311∗∗∗ 5.313∗∗∗ 7.822∗∗∗ 14.841∗∗∗ -0.603 3.065∗∗∗ 1.977 2.776 

(0.974) (1.600) (2.090) (2.999) (2.594) (1.092) (1.617) (2.309) 
Arrived between 8:45 and 9:15 1.763∗ 8.382∗∗∗ 7.461∗∗∗ 15.240∗∗∗ -1.750 2.290∗∗ 0.243 4.970∗ 

(0.932) (2.362) (2.165) (3.176) (2.607) (1.057) (2.058) (2.733) 
Arrived between 9:15 and 9:45 2.048∗ 6.616∗∗ 9.475∗∗∗ 19.207∗∗∗ -0.892 3.000∗∗ 3.889 3.167 

(1.144) (2.734) (2.878) (3.510) (2.604) (1.517) (2.458) (3.300) 
Arrived between 9:45 and 10:15 5.790∗∗ 5.589∗∗∗ 2.748 10.476∗∗ -0.725 0.907 0.182 5.331 

(2.425) (1.873) (2.076) (4.655) (2.587) (1.607) (1.731) (5.410) 
Arrived between 10:15 and 10:45 2.970∗ 4.934∗∗ 6.496∗∗ 6.035 -1.582 5.011 3.295 8.877 

(1.620) (2.321) (2.703) (4.984) (2.561) (3.857) (4.189) (5.508) 
Arrived between 10:45 and 11:00 3.655∗∗∗ 2.228 -7.348∗∗∗ 9.861 2.263 4.354∗∗∗ 5.470 2.443 

(1.210) (2.567) (1.981) (6.788) (3.302) (1.655) (3.321) (6.626) 
n 542 394 459 424 426 447 467 250 
R2 0.338 0.223 0.283 0.612 0.341 0.174 0.280 0.759 

Notes: Robust standard errors are in parentheses. All models include the same control variables as in Table 2 except for the MSA fixed 
effects and the MSA size dummies. OLS is used for estimation. The Los Angeles MSA includes Los Angeles, Riverside, and Orange 

∗ p < 0.05, ∗∗∗Counties. The Greensboro MSA includes Greensboro, Winston-Salem, and High Point counties. p < 0.10, ∗∗ p < 0.01. 
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